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Galerkin finite-element approximations are combined with computer-implemented 
perturbation methods for tracking families of solutions to calculate the steady 
axisymmetric flows in a differentially rotated cylindrical drop as a function of 
Reynolds number Re, drop aspect ratio and the rotation ratio between the two end 
disks. The flows for Reynolds numbers below 100 are primarily viscous and 
reasonably described by an asymptotic analysis. When the disks are exactly 
counter-rotated, multiple steady flows are calculated that bifurcate to higher values 
of Re from the expected solution with two identical secondary cells stacked 
symmetrically about the axial midplane. The new flows have two cells of different 
size and are stable beyond the critical value Re,. The slope of the locus of Re, for 
drops with aspect ratio up to 3 disagrees with the result for two disks of infinite radius 
computed assuming the similarity form of the velocity field. Changing the rotation 
ratio from exact counter-rotation ruptures the junction of the multiple flow fields into 
two separated flow families. 

1. Introduction 
The cellular flows induced by differentially rotating two coaxial and parallel solid 

surfaces that cap a cylindrical drop are of much interest as a fluid-mechanical model 
for a small-scale floating zone system. In a previous paper (Harriott & Brown 1983; 
hereinafter referred to as I), we presented an asymptotic analysis for the structure 
of these flows valid when the Reynolds number Re was small and when surface tension 
was large enough that capillary pressure dominated viscous stress, so that the zone 
remained nearly cylindrical for all amounts of differential rotation. The explicit form 
of the velocity field derived in I allowed detailed analysis of the structure of the flow 
field for zones of different aspect ratio and the entire range of rotation ratios 
- 1 < s < 1, where s = Q,/L?, is the ratio of rotation rates of the top (62,) to the 
bottom (a,) solid surfaces. The flows were classified by the cellular form of the 
meridional motions driven by the inertial coupling with the imposed angular velocity. 
These secondary flows varied in structure from a single cell for s = 0 to two equal 
cells symmetric about the midplane of the drop for equal counter-rotation (s = - 1). 

The range of applicability in terms of Re of the asymptotic results in I is undecided 
and is necessary for establishing their usefulness. Only Kobayashi & Wilcox (1982) 
present calculations a t  large Reynolds number ; but their finite-difference resuits are 
limited to a drop twice as long as its radius with Re = 100 and are insufficient for 
determining the accuracy of the asymptotic formula. I n  this paper we analyse the 
structure of the flow fields in exactly cylindrical floating zones for rotation ratios 
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between - 1  < s < 0 and Reynolds numbers up to 200. To do this, Galerkin finite- 
element approximations for the velocity and pressure fields are combined with 
computer-implemented perturbation methods for tracking families of flows to 
calculate the steady axisymmetric flows with varying Reynolds number for set values 
of 8 and aspect ratio. 

The numerical methods used here for detecting bifurcations between families of 
flows and for tracking flow families through turns with respect to Reynolds number 
are necessary for careful analysis of a nonlinear boundary-value problem. This is 
especially true of this rotating flow, because of its relationship to the flow between 
two rotating disks of infinite extent. Starting with Pearson (1965), a number of 
authors (Mellor et al. 1968; Nguyen, Ribault & Florent 1975; Roberts & Shipman 
1976; Holodniok, KubiEek & HlavaEek 1981 ; Szeto 1978; Keller & Szeto 1980) have 
reported multiple steady-state flows when the velocity field is written in terms of von 
Karmin’s (192 1 )  similarity transformation and no boundary conditions are included 
at the edge of the disks. Most recently, Szeto (1978; see also Keller & Szeto 1980) 
used systematic methods for tracking solution families similar to those employed here 
to calculate 18 different types of flows for various values of s and Re. 

Only when the surfaces were exactly counter-rotated ( s  = - 1 )  were a pair of these 
flow families founkto be connected at  a bifurcation point in Reynolds number. A t  
this critical value Re, the family of flows with two symmetric secondary toroidal cells 
lost stability to bifurcating motions without this plane of symmetry and then evolved 
to larger values of Reynolds number. Changing the rotation ratio away from s = - 1 
destroyed the symmetry between the rotating surfaces and broke the connecting 
families into two separate branches. The structure of these flows for s close to - 1 is 
described by the theory of imperfect bifurcations near (in the parameter space) a 
supercritical bifurcation point (Keener & Keller 1973 ; Matkowsky & Reiss 1977) and 
is discussed in $4.2 as it applied to flows in a cylindrical drop. 

The finite-element formulation of the governing equations is sketched in 92, and 
the form of the velocity field for 0 < Re ,< 100 is described in $3. Results for the 
multiplicity of the steady flows satisfying the entire set of equations and boundary 
conditions for the cylindrical drop are presented in 94. 

2. Formulation and solution methods 
The cylindrical drop of a Newtonian liquid is held between two circular solid 

surfaces of radius R which are separated by a distance H ,  as shown in figure 1 .  The 
velocity and pressure fields within the drop are written in a stationary dimensionless 
coordinate system defined by scaling all distances with H so that the drop shape is 
described solely by the aspect ratio A = R / H .  The axisymmetric swirling flows caused 
by rotating the lower f a e  at a speed Sa and the top at SO are governed by the 
dimensionless equations of continuity and motion 

v*v = 0, (1 1 

R e v * B u + V p - V . t  = 0 ,  (2) 

in which the velocity has been scaled with 52R and the pressure with pQA, where p 
is the liquid viscosity. The Reynolds number is defined by Re = pQRH/p, where p is 
the density of the liquid and t = $(Vv+ Vv‘) is the dimensionless deviatoric stress. 
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FIGURE 1. A differentially rotated cylindrical drop with radius R and height H .  

The boundary conditions on velocity are 

v u , = O ,  v , = r ,  v , = O  ( O G r S A ,  z = O ) ,  (5) 

9Jr=0, V g = 8 T ,  W t = O  ( O < Y & A ,  % = I ) .  (6) 

Equations (3) state the standard gymmetry conditions for the centerline and (4) me 
the relations for no penetration and no tangentid stress a t  the cylindrical meniscus. 
Equations (5)  and (6) specify no slip and no penetration along the solid disks. 

The flows satisfying (1)-(6) are. cslculated by the Galerkin finite-element method 
which ia well-developed for the sdukhn of modercate-ReynoMs-nurnber Newtonian 
flows. Since the details of this approach are avaiisble in many references (Huyakorn 
et al. 1878; Thorntweet 1981), we only sketch the methods used in our calculations. 
The h i d  domain (0 & r Q A ,  0 S z f 1) is divided into quadrilateral subdomains or 
elements and the pressupe and velocity fields ape approximated by expansions in 
terms of coefficients and polynomial basis functions defined by the discretization : 

M 

i-1 
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We use the standard mixed interpolation basis sets with continuous bilinear 
polynomials { x i ( r ,  z ) }  for approximating pressure, and biquadratic ones { @(r ,  z ) }  for 
components of velocity. 

The coefficients in (7 )  and (8) are determined by solving the nonlinear algebraic 
equations that result from the Galerkin weighted reRidua1 equations of ( 1 )  and (2). 
These are 

f joAXi(v*o)rdr t i z  = o (i = 1, ..., HI, (9) 

j O 1 ~ o A ~ i ( ( R e e , . v . V v + e , . ~ ~ + t : V ( * i e , ) r d r d z  = 0 (k = r , f 3 , z ,  i = 1 ,  . . . ,Ar),  (10) 

where (er ,  e,, e,) are the unit vectors in the cylindrical coordinate system. The 3N + M 
nonlinear equations (9) and (10) are written in a condensed form as 

R(x;Re,A) = 0 ,  ( 1 1 )  

with xT = (p,  u, v,  w ) ~  being the vector of coefficients in the finite element expansion. 
Starting with a first approximation to the solution vector x(O) these equations are 
solved by Newton's method, which converges iteratively according to the sequence 

(12) 

J(x('0) &i+l) = - R(x( ; Re, A ) ,  (13) 

X(i+l) = x(0 + &i+l), 

where is the solution of 

and J is the Jacobian matrix, i.e. Jii = aR,/axj. Equation (13) is solved by Gaussian 
elimination. 

Newton's method has several advantages over more simply formulated techniques 
for solving the set ( 1  1 ) .  Besides the rapid convergence rate to a solution, the ,Jacobian 
matrix used in (13) is the basis of computer-implemented perturbation methods for 
tracking families of solutions and for detecting multiple solutions in terms of changes 
in one or more parameters. We use the continuation procedure described in Brown, 
Scriven & Silliman (1980; see also Ungar & Brown 1982) to  construct first approxi- 
mations to solutions of ( 1  1 ) .  Intersections between two families of steady flows (simple 
bifurcation points) are signalled by a singular Jaeobian matrix of the converged 
solution and are easily detected by checking the sign of the determinant of J. The 
methods we use to force the finite-element algorithm to converge to the new bifur- 
cating solution family and to trace flows around a limit point in Re are described 
in the paper of Yamaguchi, Chang & Brown (1984). The relative stability of multiple 
solutions to temporally monotonic disturbances in the flow is determined directly 
from the structure of the bifurcating families (Iooss & Joseph 1980). 

The calculations presented here for liquid zones with aspect ratio of one or more 
were performed with a regularly spaced grid of six elements in the radial and twelve 
in the axial directions, which gave 3 N +  M = 1066; a mesh of five radial and sixteen 
axial elements was used for calculations with A less than one (31V+M= 1191). 
Calculations with various coarser meshes have shown the meridional flow to be the 
more sensitive to element refinement than the azimuthal circulation. At least four 
radial and four axial biquadratic elements were found to be necessary to represent 
the details of a single flow cell at A = 1 and Reynolds numbers up to 200. 

The meridional flow patterns are displayed as contours of the stream function 
!P(r, z ) ,  defined by v,. = ( l /r )  a!P/az and w, = ( -  l / r )  a!P/ar, which is calculated by 
numerical integration of the radial velocity. All calculations were carried out in 
double precision arithmetic on the IBM 370/168 computer a t  M.I.T. 
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FIGURE 2. Intensity Ym,, of the secondary flow for exact counter-rotation and several aspect ratios; 
both asymptotic (---) and finite-element (-) results are shown. 

3. Flow structure 
For low Reynolds numbers, the angular circulation was primarily a simple shear, 

and weak axial variation of centripetal pressure drove the slow toroidal secondary 
flow. In  this viscous limit, the angular circulation dominated the flow and the 
intensity of the meridional cell scaled with Re, as described by the asymptotic analysis 
in I. When the disks were counter-rotated, a second toroidal cell formed as a result 
of the minimum in centripetal pressure that existed within the drop. This second cell 
emerged from the corner of the upper disk and the meniscus and grew as the degree 
of counter-rotation increased. When the solid disks were exactly counter-rotated 
(s = - 1) the flow field was symmetric about the axial midplane of the zone. 

Finite-element calculations for exact counter-rotation and A = 1.0 have shown the 
flow to be primarily viscous up to  Reynolds numbers of nearly 100. For 0 < R e  < 100 
the strength of the circulation increased nearly linearly with Re, the centres of the 
cells remained essentially stationary and the angular velocity field deformed only 
slightly from the uniform shear flow ; each of these were properties of the perturbation 
solution presented in I. A quantitative comparison between the numerical and 
asymptotic results is shown by the intensity of the secondary circulation Ymax, which 
is plotted in figure 2 as a function of R e  for s = - 1 and several aspect ratios. Except 
for long drops ( A  < l ) ,  the asymptotic and numerical values of YmaX agreed to within 
10 yo up to Reynolds numbers near 100. 

With other rotation ratios, the distortion of the flow field by inertial coupling 
occurred a t  lower values of the Reynolds number. For example, the streamlines and 
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Reynolds number Re 

FIGURE 4. Intensity of the secondary flows for A = 1 and two rotation ratios; both asymptotic (---) 
and finite-element (-) results are shown. 

contours of azimuthal velocity plotted in figure 3 for s = -$ and A = 1 demonstrated 
a significant change in the velocity field a t  Reynolds numbers of 50 or more. Although 
the flow was still primarily azimuthal, the contours of angular velocity were 
convected by the dominant cell upward near the meniscus and outward near the lower 
disk. A t  Re = 100 ,  the flow began developing a rigidly rotating core, as marked by 
nearly vertical contours of angular velocity. The meridional flow was dramatically 
affected by the changes in centripetal pressure, and the weaker upper cell was 
squeezed toward the corner of the top disk and the meniscus. The intensity of the 
secondary circulations, as measured by !Pmin and !Pmax, are plotted on figure 4 and 
show the asymptotic result to be within 10% of the finite-element calculation for 
Reynolds numbers up to O( 10). The intensity of the upper cell was greatest at  Re x 50 
and decreased for larger values of Re. 

Pao (1970) reached a similar conclusion for analysis and calculations of the flow 
between rotating and stationary disks surrounded by a rotating shroud. This system 
is analogous to our cylindrical drop with s = 0, except for the boundary condition 
on the cylindrical sidewall. For a cylinder with A = 1, Pa0 found good agreement 
between finite-difference calculations and perturbation results up to Re x 20. Beyond 
this value Ym,, levelled and reached a maximum a t  Re x 100. 

The velocity fields for isorotation (s = 0) with A = 1 are shown in figure 5 and 
indicate a more subtle evolution with increasing Re. While the pattern of the cellular 
flow was essentially unchanged, the' angular velocity developed an almost rigidly 
rotating core by Re = 50. The intensity of the secondary circulation Ym,, is displayed 
in figure 4 and agrees with the asymptotic theory to within 10 yo for Re = O( 10). 
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FIGURE 5. Sample streamlines and contours of azimuthal velocity for A = 1, s = 0 
and several values of the Reynolds number. 

4. Flow multiplicity 
4.1. Exact counter-rotation : perfect bifurcation 

Although the flows for Reynolds numbers up to 100 appeared to be dominated by 
viscosity, the nonlinear interactions between the rapid azimuthal velocity and the 
meridional circulation had important consequences for the evolution and multiplicity 
of the flow with increasing Re. For an exactly c?ounter-rotated zone with A = 1, three 
families of steady axisymmetric flows were found beyond the critical Reynolds 
number Re = Re, z 109. These flows are represented in figure 6 by the sum of the 
meridional circulations for the two cells Ymin + Ym,, ; the flows in the original family 
had reflective symmetry about the middle of the drop and so had no net circulation. 
The flows in the bifurcating families did not have this symmetry ; one of the cells grew 
larger than the other and (!Fmin+ Vm,, < 0) had the larger cells a t  the top of the 
drop. The flows in the lower and upper branches a t  the same Reynolds number were 
related by a reflection about the midplane of the drop. We limit our description to 
flows in the upper branch only. 

Elementary arguments linking simple bifurcation and the linearized stability of 



Flozcl i n  n differentially rotated cylindrical drop 41 1 

0.021 I I 

-0.021 I 
0 100 200 

Reynolds number Re 

FIGURE 6. Symmetric and asymmetric flow families for A = 1 and s = - 1 represented by 
$max+$min and plotted as a function of Re. The dashed line --- denotes unstable flows. 

flows in the connecting families (Iooss & Joseph 1980; Yamaguchi et al. 1984) 
show that flows in both branches of the asymmetric families are stable to two- 
dimensional disturbances that are monotonic in time, i.e. that don't lead to 
time-periodic flows. 

Sample velocity fields from the symmetric and lower asymmetric branch are 
compared in figure 7 for A = 1 and Reynolds numbers of 125 and 200. On the 
symmetric branch there was little change in the cellular flow over this range of 
Reynolds numbers, but the distortion of the azimuthal velocity from the meridional 
flow became increasingly apparent. By Re = 200, local minima in the angular velocity 
field formed halfway between the disks and the axial midplane, which seemed to 
presage the asymmetric flows, I n  the asymmetric flow, a uniformly rotating core 
appeared in the upper regions of the zone and the contours of angular velocity were 
compressed towards the lower disk. Likewise, the top cell expanded and the bottom 
cell contracted. Near the bifurcation point, the surfaces which separated regions of 
opposing azimuthal and meridional circulation lay close to the midplane of the drop. 
However, by Re = 200 both zeros of the flow had shifted roughly halfway to  the lower 
disk a t  the meniscus, where the asymmetry was most pronounced. A close 
correspondence between these surfaces was expected near the meniscus as the 
non-rotating contour generated no centripetal pressure to oppose the inward flow of 
the meridional circulation. The secondary minima of angular velocity on the symmetric 
branch seen a t  Re = 200 thus indicated the possibility for asymmetric flows, although 
the physical mechanisms that determine the point of bifurcation may be more 
complex. 

The finite-element/Newton algorithm was used to compute the Reynolds number 
Re, for the branching of the asymmetric family for aspect ratios 0.85 < A < 3.0. The 
results are displayed in figure 8, and show the most unstable aspect ratio to be 
approximately A = A ,  1.25. For zones with A < A, ,  Re, increased sharply; a t  
A = 0.85 the critical Reynolds number was greater than 300, and calculations with 
the 5 x 16 element mesh were too inaccurate to warrant continuing the calculations. 

B L M  144 14 
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4 7  

FIGURE 7 (a). For description see opposite. 

For zones with A > A, ,  Re, increased almost linearly, with dRe,/dA x 24 as A was 
increased. 

The linearity of Re, with aspect ratio for 1.5 < A < 3.0 suggested that for very 
large A the critical value would be extrapolated as 

h h  

Re = Re, x dRe/dA = 24, (14) 

where Rhe = Re/A was the appzopriate Reynolds number for A >> 1.  The result was 
not near the critical value of Re, = 119 calculated by Keller & Szeto (1980; see also 
Szeto 1978) for the bifurcation of symmetric and asymmetric solutions to the 
similarity equations valid for velocity fields of the form 

ws(r, z )  = rg ( z ) ,  Y ( r ,  z )  = r2h(z) .  (15) 

Asymmetric velocity fields for s = - 1 of the form given by (15) have the separating 
streamline parallel to the rotating disks and displaced from the centre of the zone. 

Velocity fields for members of the symmetric and asymmetric families are 
compared in figure 9 for A = 3.0 and Re = 200. In the symmetric flow, all but the 
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FIGURE 7. Comparison of velocity fields for flows belonging to the symmetric and asymmetric 
families a t  Reynolds numbers of (a )  125 and ( b )  200; A = 1 and s = - 1. 

outer third of the flow was of the similarity form. However, the region of similarity 
for the asymmetric flow receded to only the inner third of the zone; the effects of 
the asymmetry had not reached the centreline. 

4.2. Unequal counter-rotation : imperfect bifurcation 

Changing the rotation ratio from s = - 1 gave unequal input of angular momentum 
from the top and bottom surfaces, broke the axial plane of reflective symmetry that 
existed between the two secondary cells for exact counter-rotation and destroyed the 
connectivity between the families of symmetric and asymmetric flow fields. The 
change in structure of the flow families is described by the theory of imperfect 
bifurcation (Iooss & Joseph 1980). The flow fields that evolved continuously from 
low R e  merged smoothly with a branch of asymmetric flows; flows in this path were 
all stable to disturbances that are monotonic in time. The other branch of stable 
asymmetric flows joined the remnants of the family of unstable symmetric flows a t  
a limit point in Re and formed a sequence of flows that were isolated from the family 
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FIGURE 8. Dependence of critical Reynolds number Re, on aspect ratio A .  

evolving from Re = 0. Asymptotic theory valid for small changes in s suggested that 
the continuous and isolated branches of the flow shift apart rapidly, scaling as i%, 
where S was a measure of the deviation from exact counter-rotation. 

Calculations of both flow families for s = -0.99 and A = 1 are compared to the case 
of exact counter-rotation (s = - 1 )  in figure 10 by plotting the circulation of the lower 
cell !Pmax. Flows in the families for s = -0.99 were traced out by calculating flows 
in each family which correspond to  fixed values of Re, but with changing rotation 
ratio to its desired value. Only changes of the order of 2 x lop3 in s were possible for 
convergence of Newton’s method with Re = 200. The solution-tracking methods 
described in Yamaguchi et al. (1984) were used to calculate the flows in both the 
continuous and isolated families for s = -0.99. The flow family that evolved from 
zero Re was close to the symmetric family for s = - 1 for low values of Reynolds 
number and traced the upper asymmetric branch beyond the bifurcation point 
Re = Re, x 109. The limit point in the isolated flow family had shifted from near 
Re, to Re x 199. Neither of the branches that connected at this limit point were close 
in the parameter space (see figure 10) to the corresponding branches for the 
unperturbed case. Clearly, the magnitude of this change in this position of the limit 
point suggested that it cannot be well approximated by an asymptotic analysis for 
small imperfections. The isolated family had flows where the less intense secondary 
cell was closest to the fastest-rotating disk and so would be difficult to achieve 
experimentally. 

5.  Discussion 
Previous interpretations of experiments on small-scale floating zones (Carruthers 

& Grasso 1972; Fowle et al. 1980) have likened the rotationally driven flows to 
classical Taylor cells (Greenspan 1969) which are found in inertially dominated flows 
slightly displaced from rigid rotation. Clearly this model is not applicable to the 
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FIGURE 9. Comparison of velocity fields for flow in the symmetric and asymmetric 
families a t  Re = 200. A = 3 and s = - 1 .  

floating zone a t  moderate Reynolds numbers ( R e  < loo), where the qualitative 
features of the flow are well described by the asymptotic expansion developed in I. 
For Reynolds numbers between 100 and 200 the flow field is still primarily viscous, 
but the inertial coupling between the meridional flow and the rapid angular velocity 
leads to multiplicity of the steady axisymmetric flows. 

The bifurcation between the symmetric and asymmetric flow families reported for 
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FIGURE 10. Symmetric. and asymmetric flow families for A = 1 and rotation ratios of - 1 .OO (m) 
and -0.99 (0) represented by the circulation of the lower secondary cell Ymax. The dashed curve 
_ _ _  denotes unstable flows. 

perfect counter-rotation (s = - 1) is structurally unstable (Thompson & Hunt 1973) 
to any small change in the system that destroys the plane of symmetry about the 
middle of the liquid zone. The imperfection caused by unequal rotation rates of the 
rods is discussed in 54.2. I n  the laboratory the sag of the zone caused by the action 
of gravity on the shape of the meniscus also will rupture the bifurcation in the same 
way that i t  affects the subcritical bifurcation which marks the Plateau-Rayleigh 
limit (Ungar & Brown 1982). 

In  contrast with the multiple solutions predicted a t  the Rayleigh-Plateau limit, 
the two asymmetric flows found for the counter-rotating cylindrical drop are both 
stable, at least with respect, to  axisymmetric disturbances that are monotonic in time. 
Therefore two flows may be observable for a range of Re above Re,. The sensitivity 
of the flow structure to  small changes in rotation ratio implies that the sharp 
transitions predicted for s = - 1 will never be observed experimentally. Instead, a 
smooth transition between almost symmetric flows at low Re and asymmetric flows 
at higher values will be observed. The second family of stable flows seems isolated 
and is probably only accessible by specific spin-up (or down) strategies. Also, 
experiments by Fowle et al. (1980) show that non-axisymmetric flows appear 
suddenly in an  exactly counter-rotated zone with A = 1 and for Reynolds numbers 
beyond 125 and probably mask the multiple axisymmetric flows. Careful velocity-field 
measurements are needed to  sort out these transitions. 

The inability of the similarity form of the velocity field to accurately predict the 
critical Reynolds number Re, for A = 3 is not unexpected. The assumption that the 
stream function scales as rs is overly restrictive and neglects the role of the boundary 
a t  7 = A on setting the form of the returning flow. Brady (1981,1983) has documented 
the failure of the similarity solution for s = 0 and large, but finite, A by comparison 
with solution of the boundary-layer equations. He found the similarity solution to 
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first fail at the edge of the disks and the region of validity to  shrink to  the centreline 
with increasing Re. A corresponding effect has been reported in rotating flows of 
viscoelastic fluids (Griffiths, Jones & Walters 1969; Kramer & Johnson 1972; Hill 
1972). Here elastic stresses in the flow can reverse the direction of the rotationally 
driven meridional flow near the outer edge of the zone. The similarity form, which 
does not allow for this edge effect, fails everywhere when the elasticity is increased 
so that the reverse flow reaches the centreline. 

This same type of breakdown in the similarity form of a solution has been observed 
in other problems with reverse flow (Brady & Acrivos 1981). We have not made a 
detailed comparison between our results and the similarity flow ; however, the 
streamlines displayed in figure 9 show that asymmetry in the flows in the bifurcating 
family indeed originate a t  the meniscus. 

Although we have not searched for analogues of the other 16 solution.families 
detected for the similarity equations (Szeto 1978), it can be argued that some of these 
indeed exist for the cylindrical drop. The problems of a cylindrical drop for A % 1 
with either a shear-free interface (a  = 1 )  a t  r = A or a boundary on which the velocity 
field fits a known similarity solution (a  = 0) (g(z;Re) ,  h(z;Re))  are limits in the 
Beequence of problems defined in terms of a,  0 < a < 1 ,  by the boundary conditions 

(16a) 

(16b) 

(16c) 

(1 -a) "@(A, z)+a-- avo (1 -a)  A g(z ;  Re) = 0,  
ar 

vr (A,  z )  - A (  1 - 01) h'(z ; Re) = 0, 

(1  -a)  wJA,  x ) -  a>+ ( 1  -a)  24 .2 ;  Re) A = 0, 
av 
ar 

where the prime denotes differentiation with respect to z .  At a = 0, each of the 
similarity flows of Szeto (1978) is a solution of the equations of motion with the 
boundary condition (16) and the functions g ( z ;  Re) and h(z;  Re) picked to match. The 
sequence of problems defined by varying a to unity gives a method for calculating 
the analogous solutions for the drop with a shear-free interface, if they exist. 

This research was supported by the Microgravity Science and Applications 
Division of the U.S. National Aeronautics and Space Administration and by the 
Information Processing Center a t  M.I.T. The authors are grateful to J. F. Brady for 
valuable discussions concerning the validity of similarity solutions. 
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